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Computer models are valuable tools towards an understanding of the cell’s biochemical
regulatory machinery. Possible levels of description of such models range from modelling the
underlying biochemical details to top-down approaches, using tools from the theory of
complex networks. The latter, coarse-grained approach is taken where regulatory circuits are
classified in graph-theoretical terms, with the elements of the regulatory networks being
reduced to simply nodes and links, in order to obtain architectural information about the
network. Further, considering dynamics on networks at such an abstract level seems rather
unlikely to match dynamical regulatory activity of biological cells. Therefore, it came as a
surprise when recently examples of discrete dynamical network models based on very
simplistic dynamical elements emerged which in fact do match sequences of regulatory
patterns of their biological counterparts. Here I will review such discrete dynamical network
models, or Boolean networks, of biological regulatory networks. Further, we will take a look
at such models extended with stochastic noise, which allow studying the role of network
topology in providing robustness against noise. In the end, we will discuss the interesting
question of why at all such simple models can describe aspects of biology despite their
simplicity. Finally, prospects of Boolean models in exploratory dynamical models for
biological circuits and their mutants will be discussed.
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1. INTRODUCTION

When, as a theoretical physicist by training, I became
interested in modelling biological phenomena, I was
fascinated when watching biologists on the blackboard
discussing a particular signal transduction network.
The circles and boxes on the blackboard, connected by
arrows and lines, were much simpler than what I had
learned as mathematical models of the dynamics of an
actual biochemical network. A full mathematical
differential equations model, with a large number of
indispensable kinetic constants and parameters, would
predict the time course of a certain regulatory pattern,
in accordance with experiment. Yet, over the seemingly
simple draft on the blackboard, the biologists were
confidently discussing about the dynamics going on
in the network. This contrast was most fascinating
to me, raising the question: what is the minimal model
one needs to get a meaningful idea about the dyna-
mics in a regulatory network? If such a model would
even be simple to use, without the need of too much
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mathematical knowledge, it would fill the gap of a
simple tool for exploratory and simple dynamical
modelling of regulatory circuits (Lazebnik 2002).

To follow this line of thought in a systematic way, let
us here consider the regulatory machinery of the living
cell from a computational perspective. How do cells
compute? And what can we learn from this exercise for
how to model the relevant dynamics of cellular control
circuits? We focus on the remarkable fact that cells
compute reliably, despite the massive presence of
molecular stochasticity, and ask whether this may
give us hints for modelling. When sloppy machinery is
at work in the cell, cannot we use ‘sloppy’ modelling
techniques, as well? This could provide a path to
simplify computer models of regulatory networks, given
that one knows which are the relevant aspects of the
system to keep in the model and which are the
irrelevant aspects that can be neglected. In the light
of our knowledge of vast amounts of molecular details,
this may be a difficult task in itself.

As one class of much simplified models for cellular
regulation, we discuss discrete dynamical (or Boolean)
networks. As a biological example, we summarize their
application to modelling yeast cell cycle control.
Adding stochastic noise to these models allows one to
discuss questions of when network dynamics is robust
J. R. Soc. Interface (2008) 5, S85–S94
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against noise—and against simplifications in computer
model implementations. A perspective that helps us in
identifying the relevant aspects of computation in the
cell is the analogy of a computer.
Figure 1. Simplified representation of the yeast regulatory
network. Interactions are classified into the two types of
being activated (green) or repressed (red), and the dynamical
elements representing the gene states are taken to be
binary with values ON (1) or OFF (0). Adapted from Maslov
et al. (2003).
2. COMPUTERS AND THE LIVING CELL

A living cell is as different as it could be from what comes
to our mind if we think of a computer; however, a living
cell has ample need for computation and control in its
routine processes. A prominent property is the continu-
ous adaptation and reaction to environmental inputs as
stress, food or damage, by movement, growth or repair.
Adaptation and regulation can be called analogue
computation, computationwith realnumbers, asopposed
to digital computation as used in modern computers.
Some aspects of computation in the cell, however, are of
digital character as, for example, the control of sequences
of events, as the cell cycle, or of multicellular develop-
ment. Such critical processes have to be controlled in a
highly reliable way, and while this would be a trivial task
for a computer made of deterministic silicon switching
elements, it surely is a much harder task to realize with
the cellular components of molecules and water.
However, many molecular regulatory elements indeed
show binary characteristics, and even bistable switches
are frequently observed inmolecular circuits (Tyson et al.
2003). Therefore, digital variables can be represented in
the cell and elements for digital computation exist, and it
is natural to ask whether there is any digital computation
in the cell.

Considering the main architecture of a digital
computer, there are few similarities with a regulatory
network in a living cell. A foremost feature of a digital
computer is that it works in subsequent steps, where
the desired sequence of actions is controlled by a
program. In early computers, for example, the sequence
was stored on a punched tape with the commands
recorded in the varying combinations of punched holes.
Sequences of events in the cell, in contrast, are not as
easily controlled. There is no simple memory for a time
sequence in the cell and, most importantly, cellular
processes are not controlled by a centralized clock as in
a digital computer. Therefore, while for the engineer a
punched tape would be the easiest option for generating
a sequence (as a pre-recorded sequence), if all that a
system has to deal with are molecules and water, this is
not a feasible option. The alternative is the dynamical
systems approach, where a network (or circuit) of
molecular elements generates a dynamical output
signal that then serves as the desired control sequence.
Thus, the sequence emerges as a dynamical trajectory
of the system, determined by the circuitry of the
system. Only, if all you have is molecular noisy, and
thus unreliable, building blocks, how can you generate a
reliable sequence of actions from them?

To illustrate this analogy between a cellular mol-
ecular circuit and a computer, let us briefly consider,
for example, the engineering example of controlling
washing machines, which like many other everyday
appliances have little computers (or microcontrollers)
that control the sequences of their functions. Switches,
temperature probes, water level probes, etc. provide
J. R. Soc. Interface (2008)
input signals to the control circuit, which from these
data generates an output, i.e. a sequence of events in
response to the input parameters, as the selected
program, temperature, water level, etc. The software
of the computer determines the sequence of switching
events, controlling pumps, valves, motors, heaters and
so on. The hardware of such a control circuit is rather
similar to a punched tape computer (early washing
machines had switching discs mounted on a common
axle, synchronously driven by a motor).

The biological side of our analogy is the task of
controlling the cell cycle in the living cell. From a
sequence control perspective, this problem is on a similar
scale with a similar number of variables and dynamical
stages as in our engineering example above. Only, the
‘hardware’ is radically different, with a small control
circuit of genes and proteins which generate the
central timing and control sequence in the cell. The
‘software’ here is the desired sequence of gene/protein
activation states along the cell cycle. The output of
the control circuit is a sequence of molecular activation
patterns, in response to external and internal signals
such as cell size, temperature, food supply, etc. The
hardware is a molecular network, with an analogue,
autonomous dynamics. It is continuously updated (no
computer clock cycle) with many elements with a
tendency to binary states.

While these two systems are fundamentally different
in almost all aspects of their hardware, they share the
central requirement of sequence coordination and
generation to keep their system running. In the
following let us consider this core problem for a
biochemical system from this engineering perspective
and ask how dynamical networks of switching elements
can generate a dynamical sequence of signals. For this
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Figure 2. Basin of attraction of a dynamical attractor of a random Boolean network. Network states (circles) and transitions
between them are shown, which eventually reach a periodic attractor cycle. Some network states do not have any precursor state
(garden-of-Eden states). Most states are transient states and form tree-like patterns of transient flows towards the attractor
(adapted from Wuensche (1994)).
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purpose we first consider dynamics of networks of
simple switches as an extreme simplification of bio-
chemical networks, which may teach us basic principles
about control pattern generation. Our central idea is to
drop the requirement of a model to predict all exact
times in the biochemical network’s dynamics (which
state-of-the-art differential equation models usually
aim at doing). As the central requirement, we keep
the requirement to predict ordered sequences of
activation patterns. This is the software in the analogy
picture. An interesting question now is whether
engineering knowledge is applicable to this ‘software
layer’ of biochemical networks. Can we construct
models of the ‘digital’ aspects of molecular network
dynamics, possibly even simple models?
Figure 3. The full state space of a random Boolean network
with NZ13 nodes: 213Z4192 initial states each flow into one
of 15 attractors (adapted fromWuensche (1994)). The basin of
attraction marked with an arrow is the one shown in figure 2.
3. DISCRETE NETWORKS AS MODELS FOR
CELLULAR COMPUTATION

One of the most condensed, and impressive, windows
into the digital character of a cell is granted by the
relatively recent experimental technique of microar-
rays. Providing a snapshot of most gene states in a cell
at a time, they allow one to watch the cellular machi-
nery at work, e.g. under changing external conditions.
Considering, for example, a simple Escherichia coli
heat shock experiment, it is amazing how deterministic
are changes of genetic activity under temperature
change (Richmond et al. 1999), which appears to glimpse
invariably through the layer of experimental noise of the
method.

The projection of gene states to a simple ON/OFF
pattern of binary states, as often derived from micro-
array data, is encouraged by such experiments and
often catches well the invariable aspects of repeated
J. R. Soc. Interface (2008)
experiments. For the modelling perspective, this
encourages the use of binary variables for representing
gene activity. Also, on the micro-level, this picture is
supported by the available accurate mathematical
models of single pathways, where, for example, gene
activities often operate with expressed protein concen-
trations varying over many orders of magnitude, mostly
either in a saturation regime or in a regime of
insignificantly small concentrations, again suggesting
the binary simplification of states. When constructing a
dynamical mathematical model, the choice of the type
of state variables is one aspect, the second being the
character of their dynamics in time. A prominent
feature of molecular concentration changes is their often
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rapid change, when compared with the typical meta-
stable character in between changes. In combination,
the typical observation of steep flanks and plateaus in
cellular protein concentrations suggests that it may not
be too unrealistic to represent gene or protein activity
by a switch-like dynamics. An example of this extreme
simplification of states and interactions in a physicist’s
view of the yeast transcriptional regulatory network
(Maslov et al. 2003) is shown in figure 1.

Let us now, in this framework, follow the idea of a
mathematical model that keeps the requirement to
predict ordered sequences of activation patterns, with-
out predicting the exact timing of a biomolecular
network. Discrete dynamical networks (also called
switching networks, or Boolean networks in a general
mathematical terminology) have long been discussed as
models for genetic regulation (Kauffman 1969; Thomas
1973). However, as until recently full architectural
information about gene regulation networks was scarce,
it was mostly random Boolean networks that served as
surrogate models for gene regulation (Kauffman 1990,
1993; Aldana-Gonzalez et al. 2003; Drossel 2008).
Simulating such dynamical networks with an architec-
ture identical to natural regulatory networks has
entered the scene only recently.

Let us, as an example, consider a particularly simple
subset of Boolean networks, the so-called threshold
networks (or threshold Boolean networks; Derrida
1987; Kürten 1988a; Rohlf & Bornholdt 2002). They
are a subset of all Boolean networks with the Boolean
function of each node depending on the sum of its input
signals only. They are particularly simple variants of
the full Boolean networks and can easily be
implemented in the computer. Nevertheless, they are
very well suited for representing regulatory networks,
as we will see below. Furthermore, the characteristic
dynamical features of Boolean networks are found as
well in threshold networks (Kürten 1988b). In these
networks each node is taking one of two discrete values,
SiZ0 or 1, which at each time step is a function of the
value of some fixed set of other nodes. The links that
provide input to node i take discrete values JijZG1 for
activating (C) and repressing (K) links, and JijZ0 if i
does not receive any signal from j. The dynamics of the
network of N nodes is then defined by a simple sum rule
for every node, which are synchronously iterated in
discrete time steps t,

SiðtC1ÞZ 1 if
XN

jZ1

JijSjðtÞChO0; ð3:1Þ

SiðtC1ÞZ 0 if
XN

jZ1

JijSjðtÞCh%0; ð3:2Þ

with some threshold parameter h. The natural choice is
a threshold of hZ0, such that the genetic switch is
inactive if there is no input signal, and switches on when
signals are present. When a node needs more than one
incoming signal to be activated, a corresponding value
of h can represent this fact in the model. Starting from a
given initial condition, the network then produces a
dynamical sequence of network states, eventually
reaching a periodic attractor (limit cycle) or a fixed
point (figure 2). The attractor length depends on the
J. R. Soc. Interface (2008)
topology of the network. Earlier studies on random
networks found that below a critical connectivity
K!Kc (average number of incoming links per node),
the network decouples into many disconnected regions,
resulting in short transients and attractors. Above Kc

any local signal will initiate an avalanche of activity
that may propagate throughout most of the system and
transients as well as attractor cycles tend to become
quite long. While the notion of criticality is only well
defined for random networks, it has long been argued
that the intermediate range of activity is particularly
suitable for efficient information processing. A promi-
nent feature of the dynamics of such networks is the
relatively small number of attractors compared with
the 2N possible states of the network (figure 3). This
feature motivated the hypothesis that a similar
mechanism potentially could stabilize macrostates
of cellular regulation as, for example, cell types
(Kauffman 1993).

Boolean models for regulatory networks remained at
this speculative level for many years and have become
more than anecdotal only very recently when applied to
modelling actual biological regulatory networks.

Thieffry and co-workers constructed early logical
models of regulatory circuits in Drosophila development
(Sanchez et al. 1997; Sanchez & Thieffry 2001). Albert &
Othmer developed a Boolean network that accurately
predicts the dynamics of a developmental module in
Drosophila (Albert &Othmer 2003). This came as a true
surprise, as nobody expected such a dramatically simpli-
fied dynamical system to predict anything close to the
dynamics of the original biological counterpart. It
turned out, however, that essential features of the
dynamics remain intact, allowing one to predict the
developmental pattern formation, while only details of
the dynamics are lost as, for example, the exact timing.
In a subsequent model by Li et al. (2004), a Boolean
network of 11 nodes is used to predict the Sacchar-
omyces cerevisiae cell-cycle dynamics, yielding accurate
predictions of the sequential events of the cell cycle.

Further applications of this model class to modelling
real biological genetic circuits show that they can
predict sequence patterns of protein and gene activity
with much less input (e.g. parameters) to the model
as the classical differential equations approach.
Examples are models of the genetic network under-
lying flower development in Arabidopsis thaliana
(Mendoza et al. 1999; Espinosa-Soto et al. 2004), the
signal transduction network for abscisic acid-induced
stomatal closure (Li et al. 2006), the mammalian cell
cycle (Faure et al. 2006) and the Schizosaccharomyces
pombe cell cycle network (Davidich & Bornholdt 2008).
Let us take a closer look at the Boolean cell cycle model
of S. cerevisiae as one prototypical example.
4. A BIOLOGICAL EXAMPLE: THE YEAST
CELL CYCLE

The cell cycle of budding yeast (S. cerevisiae) is a
widely studied example of a robust dynamical process
in the cell (Mendenhall & Hodge 1998; Chen et al.
2004). The yeast cell cycle control circuit is probably
one of the best understood molecular control networks,
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with accurate biochemical kinetic models available
(Chen et al. 2005). It thus provides an ideal test bed for
validating a Boolean network model version of it. Such
a model has been proposed by Li et al. (2004), modelling
a network of 11 proteins or genes as binary nodes Si ,
each with two possible states Si2{0,1} (figure 4).

Their states depend on signals they receive from
each other via discrete links JijZG1 for activating (C)
and repressing (K) links (green/red arrows in the
figure). The dynamics of the network is then given by a
slightly modified threshold network sum rule for every
node, which again are synchronously iterated in
discrete time steps t,

SiðtC1ÞZ 1 if
XN

jZ1

JijSjðtÞChO0; ð4:1Þ

SiðtC1ÞZSiðtÞ if
XN

jZ1

JijSjðtÞCh Z 0; ð4:2Þ

SiðtC1ÞZ 0 if
XN

jZ1

JijSjðtÞCh!0; ð4:3Þ

with threshold parameter hZ0. The only difference to
standard threshold networks is the separate rule if no
input is received by a node. It keeps its current state
unless it is actively regulated. Only so-called self-
degrading nodes (indicated by loops in figure 4) go to
the inactive state in this case according to

SiðtC1ÞZ 0 if
XN

jZ1

JijSjðtÞCh Z 0: ð4:4Þ

Note that there are no kinetic constants and other
continuous variables entering this model. It is solely
based on the wiring diagram of the network defined by
the interaction links Jij and their sign (C/K). This
‘wiring’ diagram is inferred from the qualitative
knowledge about who interacts with whom in this
regulatory module. Accordingly, the predictive power
of this model does not lie in accurate quantitative
predictions of concentrations and timings. Instead, it is
able to provide a bird’s eye view on the space of all
possible network states, and how they are related
through dynamical transitions. This is the attractor
picture of dynamical flows in the network.

In this example, any dynamics on the network
eventually gets stuck in one of seven fixed points, one of
which has a large basin of attraction; in fact, 1764 of the
211Z2048 possible initial states of the network end up
in this state (figure 5). Surprisingly, this unusual end
state corresponds to the biologically stable final state
(G1) at the end of the cell cycle. Furthermore,
preparing the network with the known protein states
at the start of the cell cycle, the dynamical trajectory of
the network follows the exact trajectory of 12 sub-
sequent phases as known from the yeast cell cycle before
reaching the G1 fixed point (arrows). This is remark-
able as it is extremely unlikely to obtain such a perfect
match by chance. No previous knowledge about the
actual dynamics of the cell cycle has been put in.

Beyond the prediction of the biological trajectory,
the attractor map provides further information about
the dynamical flows in the space of possible states. A
J. R. Soc. Interface (2008)
fan-like convergence of the non-biological dynamical
paths towards the correct trajectory may be interpreted
as some form of error-correction ability, and artificial
knockout experiments in the computer point towards
an unusual stability of the correct biological trajectory
(Li et al. 2004).

This is an example for using a simple threshold
Boolean network to predict the sequence of states of a
small biological regulatory network. But how general is
this method? A recent independent study on the
different regulatory module of the fission yeast cell
cycle network indicates that application of the method
is quite straightforward and does not require tuning of
any sort, at least in this example (Davidich &
Bornholdt 2008). Again, a network of interactions
(figure 6) has been constructed from known interaction
data, yielding a state space map, which again shows one
prominent attractor that corresponds to the biological
trajectory and fixed point of the cell cycle (figure 7).

Let us step back for a moment and view these models
in our sequencing-computer perspective. We now have
a picture of a switching network representation that
generates a sequence of actions in a computer-like
reliability. What is different is that it is not stored on a
tape, but generated intrinsically by the dynamics of
the network.

What can we learn from the fact that the major course
of the dynamics of a real biochemical network can be
represented in such a simple way? A simple interpre-
tation is that the sequence of actions can be viewed as the
‘blueprint of the dynamics’ of the control of the cell cycle.
The inner dynamical workings of a cellular sequence
control network could be this simple, if it would not
have to be implemented by biochemicalmeans.However,
as the elements of the network are of biochemical nature,
with signals transmitted by small and fluctuating
numbers of molecules, the observed dynamics in the
cell is more complicated than the underlying digital
layer as modelled with the Boolean network.

The question remains as to when and under what
conditions can biochemical networks in fact implement
a ‘dynamical blueprint’. Proteins and genes are ‘noisy’,
with fluctuating activity (McAdams & Arkin 1997),
which sometimes even shows in the macroscopic
phenotype (Pedraza & van Oudenaarden 2005). How
does the molecular network achieve a clockwork-like
reliability despite the fluctuating molecular building
blocks (Rao et al. 2002)? These questions can be
explored in an extended version of Boolean networks,
with added stochasticity.
5. DISCRETE NETWORK MODELS AND
STOCHASTIC DYNAMICS

The fundamental question of how to achieve reliable
computation by means of unreliable elements dates
back to a time when the first computers were built
(von Neumann 1956). In the context of noisy dynamical
networks, it is an important question, as well. However,
adding noise to Boolean networks is not straightfor-
ward w.r.t. arbitrarily small noise levels. Commonly, a
whole node is flipped to its opposite state (Qu et al.
2002; Aldana & Cluzel 2003; Kauffman et al. 2003,
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Figure 4. Boolean network model for the yeast (S. cerevisiae)
cell cycle control network as defined by Li et al. (2004).

Figure 5. Every dot is a state of the network (with a specific
ON or OFF state for every node), and the arrows denote the
sequence of network states in time. Of seven attractors in
total, the largest attractor has a basin of 1764 states, which all
flow into the G1 fixed point.
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2004; Shmulevich et al. 2003), which is not very realistic
if one wants to mimic stochastic fluctuations. Let us
expand the Boolean model to be time-continuous and
stochastic such that it can account for these effects.

A simple extension is to add a (protein) concentration
dynamics inside a node, while keeping Boolean
ON/OFF states on the outside, for communication
between the nodes. At each node, the input signals from
neighbour nodes are summed up and drive growth or
decay of a concentration variable ci(t) (motivated by the
dynamics of protein in regulatory processes of the cell).
We here extend the basic model with an explicit time
delay td, accounting for the transmission time of the
incoming signals. Similar models for regulatory net-
works have been discussed by Glass (1975). We here
in addition allow the transmission delays to fluctuate (in
order to account for biochemical noise). Depending on
whether the sum is negative or positive, a decay or
growth process results, most easily described by a simple
differential equation, driven by a binary (0 or 1) input,

t
dciðtÞ
dt

Z 1K ciðtÞ if
XN

jZ1

JijSjðtKtdÞChiR0;

ð5:1Þ

t
dciðtÞ
dt

Z 0K ciðtÞ if
XN

jZ1

JijSjðtKtdÞChi!0;

ð5:2Þ
with a suitably defined threshold hi for each node. The
binary output of the node is derived from the concen-
tration by a simple threshold rule:

SiðtÞZ 1 if cðtÞR0:5; ð5:3Þ
SiðtÞZ 0 if cðtÞ!0:5: ð5:4Þ

Noise can now conveniently be added to the trans-
mission delay times td/tdCcij with cij a uniformly
distributed random number c2{0,cmax} chosen inde-
pendently for each single link Jij. Randomness is not
quenched in this model, which means that each cij is
freshly drawn whenever a new signal enters the link. In
J. R. Soc. Interface (2008)
general, with this technique of noisy transmission times,
the effect of very small levels of noise can be examined.

The most significant consequence of extending a
Boolean network in this way is that the nodes are no
longer synchronously updated in discrete time steps.
Instead, each node obeys its own, autonomous
dynamics (only when noise fluctuations are turned
down to zero, the original synchronized dynamics is
restored). With noise in the system, however, processes
may desynchronize in the network and become
unstable, and the question of how a reproducible
time sequence can be generated by the network can
be studied in this setting. This can be viewed as a
toy model for how robustness against noise from
biochemical stochasticity can be achieved in cellular
regulation. In fact, when adding noise to Boolean
networks, it was found that most attractors in
Boolean networks are artefacts of the synchronous
update mode and disappear in the presence of noise
(Greil & Drossel 2005; Klemm & Bornholdt 2005a).
Therefore, not every dynamics of a deterministic
Boolean network can be reproduced in a noisy Boolean
networkwithout a central update clock, and presumably
not in the wet analogue of a biochemical network either.

Let us call those networks ‘reliable’, whose dynami-
cal attractors of the deterministic Boolean network are
correctly reproduced in the noisy Boolean network
version. We can then look for the conditions that a
network architecture has to fulfil in order to exhibit
reliable dynamics. This is the model version of the
question of how a biochemical system manages to
produce a reliable time sequence of protein states,
despite lack of a central update clock as in a computer.
It turns out that even a simple network as the
extended Boolean network above is able to produce a
reproducible dynamics despite noise and lack of a
central clock (Klemm & Bornholdt 2003). The low pass
filter characteristics of the smooth loading curve, as
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well as the signal transmission time delay, help the
formation of a self-organized internal clock.

Specific circuit motifs, however, exhibit a dynamics
that is not reproducible (see figure 8 for the simplest
example of a two-node oscillator (Braunewell &
Bornholdt submitted)). In general, certain circuit
patterns are unreliable in the presence of noise, another
example being feedback loops with an even number
of inhibiting interactions (Klemm & Bornholdt 2005b).
A practical example for a reliable circuit is the three-
node feedback loop with inhibitory couplings, also
called the repressilator (Elowitz & Leibler 2000). A
four-node version of it, on the contrary, is unreliable
and would not exhibit stable oscillations. A central
requirement is that the time ordering of flips (state
changes of nodes) has to be robust against noise for the
network to stay within a given attractor. This leads to
conditions on the circuitry similar to known rules in
electrical engineering (Klemm & Bornholdt 2005b).
Related criteria for dynamics in feedback loops have
been worked out for non-delayed networks (Glass &
Pasternack 1978).

So, how about the budding yeast cell cycle network:
is it reliable? Clearly, this is a rather philosophical
question because, as we all know, yeast functions very
well. However, from the modelling side, we so far only
know that deterministic models reproduce the biolo-
gical sequence. On the other hand, phases with multiple
flips among the nodes can in principle desynchronize
the system. With noisy Boolean networks at hand, we
are now able to make a double check, which indeed
J. R. Soc. Interface (2008)
has been done (Braunewell & Bornholdt 2006) by
reformulating the model by Li et al. (2004) in terms of
noisy Boolean nets. The result of this test is that the
correct control sequence emerges from the network,
even in the presence of strong noise. Therefore, the
yeast cell cycle network is reliably controlled, with
the order of switching events being stable against
timing fluctuations.
6. SUMMARY AND OUTLOOK

We started out with a comparison of computers with
the principles of computation in the cell and discussed
the fundamental difference between central clocking
and emergent sequence in the autonomous dynamical
system of a regulatory network in the cell. The
dynamical systems analogy turns out to be fruitful as
it seems to provide a tool for simple exploratory
modelling of regulatory networks where kinetic details
for precise modelling are not yet known, or where even
part of the circuit might still be unknown.

Why do Boolean networks work as models for
regulatory network sequences? In a sense we can view
them as coarse simplifications of the successful differ-
ential equation models in the yeast example. The
detailed yeast models (Chen et al. 2000) rely on the
well-founded assumption that the regulatory dynamics
largely consists of transitions between stationary states.
These stationary states are the basis for the Boolean
states of the network model, with the Boolean dynamics
modelling the transitions between them, as well. A
second point addresses the noise aspect: at least in our
model perspective, we can say that an attractor that is
stable in the noisy Boolean network is also present when
turning the noise to zero—thus it can be represented in
a deterministic Boolean network! This is simplicity for
free, unless noise is active on the macroscopic level.
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Where could these models fail? A clear limitation is
where stochastic effects propagate from the micro- to
the macro-level. While in general this is a rather exotic
phenomenon in regulatory networks (Acar et al. 2008),
it may be relevant in specific circumstances (for
example, cell differentiation). The simplest network
model failure, and probably the most frequent, is
insufficient knowledge of the network architecture.

An interesting outlook is the application of the
Boolean approach to exploratory, predictive modelling
of a system where indeed kinetic constants are not
sufficiently known for constructing a predictive differ-
ential equations model.

Knowledge about the network architecture of the
regulatory module which one wants to simulate,
however, has to be rather complete: as the knockout
experiments on the budding yeast model network of
Li et al. (2004) have shown, a single change in the wiring
diagram changes the dynamical trajectory with a 50%
probability. Therefore, in order to expect a dynamical
simulation to match the biological system, the circuitry
of the biological module is the most important asset of
this approach. If the network structure is not fully
known, on the other hand, exploratory modelling may
be a valuable guide towards the completion of the
network model wiring, for example by creating several
variants of a network and then comparing each of them
to the real system. In addition, the universal require-
ment of reliability against biochemical stochasticity
may provide valuable hints and further constrain the
set of possible topologies.

Boolean networks thus show a way to start model-
ling dynamics of molecular networks at an earlier
J. R. Soc. Interface (2008)
stage than we are used to today. The simple steps to
apply this technique are the following: (i) identify
interaction network—make sure you have full knowl-
edge of the network. Where unsure, make several
variants of the network. (ii) Translate into a switching
network. (iii) Simulate. (iv) Compare with known
dynamical sequence data. Is not this what we do in
our minds when drawing signalling networks on the
blackboard?

The author thanks the organizers R. Albert, A. Goldbeter,
P. Ruoff, J. Sible and J.J. Tyson and the participants of
the workshop ‘Biological Switches and Clocks’ at KITP,
Santa Barbara, for creating a truly inspiring meeting.
Two anonymous referees contributed to this article with
their valuable comments. This research was supported in
part by the National Science Foundation under grant no.
PHY05-51164.
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